Remarkably small critical exponent for the viscosity of a polymer solution
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We have measured the apparent critical exponent y characterizing the divergence of the viscosity
n%(T—T,) ” near the liquid-liquid critical point of the mixture polystyrene in diethyl malonate.
The data span the range in reduced temperature of 1074<(T— Tc)/Tc<10"1. The sample was
prepared from the same materials used by Gruner etal. in their capillary viscometer
[Macromolecules 23, 510 (1990)]; however our torsion oscillator viscometer had a shear rate 80
times lower. This increased the range of reduced temperatures where shear effects could be
neglected. In spite of the large reduction in shear rate and the different viscometry technique, the
parameters fitted to our data and those of Gruner e al. are in agreement. For this polymer solution,
y is in the range 0.028+0.003, close to recent results for two other polymer solutions measured in
capillary viscometers. However, it is significantly smaller than the exponent for pure fluids (0.041=
0.001) and simple binary mixtures (0.04220.002). It appears that polymer solutions are in a
dynamic universality class different from that of simpler fluids.

1. INTRODUCTION

As is the case for binary mixtures of simple liquids, the
viscosity 7 of polymer solutions diverges asymptotically
near the critical solution temperature T, as

nxe’, (1)

where e=(T—T,)/T. is the reduced temperature. Recent ex-
periments near the consolute points of four binary mixtures
of small molecules' and near the liquid—vapor critical points
of two pure fluids® found apparent critical exponents in the
range y=0.042*0.02, confirming the widely accepted hy-
pothesis that both types of fluids are in the same dynamic
universality class. (See Ref. 3 for reviews.) Furthermore, this
range of y is consistent with the recent mode-coupling cal-
culation by Hao.*

Light scattering (e.g., Refs. 5—8) and coexistence curve
(e.g., Refs. 9 and 10) data for polymer solutions, as well as
for pure fluids and simple binary liquids, are all consistent;
thus all three types of fluids are in the same static universal-
ity class. In contrast, unique aspects of polymer behavior
such as intramolecular contraction and intermolecular en-
tanglement could possibly change the scaling of dynamic
critical phenomena. Examples of dynamical behavior of se-
midilute polymer solutions differing from that of simpler flu-
ids include nonexponential autocorrelation functions'!"'? and
qualitatively different responses to large shear rates.">~'° Re-
cently, Tanaka and Miura'® presented measurements of the
dynamic modulus of polystyrene in diethyl malonate and ar-
gued that the critical anomaly was suppressed by slow poly-
mer dynamics. The results of the present work support the
idea that polymer solutions are in a dynamic universality
class different from that of simpler fluids.

In this paper, we report new measurements of the shear
viscosity near the critical point of polystyrene in diethyl ma-
lonate which, when combined with previous measurements
on the same system,'’ achieve an unprecedented combination
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of a wide range of temperature and, close to T, a low shear
rate. A low shear rate is essential for measuring the hydro-
dynamic viscosity without encountering complications due
to the fluid’s characteristic internal relaxation. Near the criti-
cal consolute point of a polymer solution, the most important
such effect can be due to concentration fluctuations, which
relax more slowly than fluctuations in solutions composed
only of small molecules. The fluctuation relaxation time 7
depends on the correlation length & and the viscosity # :

6mEn
T

@

T

where kg is Boltzmann’s constant. At the same reduced tem-
perature, both & and 7 are larger in polymer solutions than
either in pure fluids or in solutions of small molecules. In
pure fluids, the conditions of low frequency (w7<1) and
low shear rate (y7<€1), required for measuring the hydrody-
namic viscosity, are easily met in the regime €<10™* In
binary liquid mixtures, the relaxation time is longer (order of
1sat e=3%10"% or 1 mK from T,), and it can lead to
significant departures of the viscosity data from the low-
frequency, low-shear rate limit. In the present polymer solu-
tion, the relaxation time is estimated to be 3 h at e=3X 1078,
Thus, even with our viscometer’s low shear rate we could
use data only at €>1.5X 10™* (40 mK above T,). Neverthe-
less, compared to measurements with typical capillary vis-
cometers, this is ten times closer to T,

This investigation was motivated by the work of Gruner
et al.,'” who used a capillary viscometer to measure the criti-
cal viscosity of polystyrene in diethyl malonate. They found
the fitted value of the viscosity exponent to be sensitive to
the choice of the function describing the noncritical, or back-
ground, viscosity, varying from y=0.015 to y=0.060. Be-
cause their maximum shear rate was 40 s~ they tried both
eliminating the data near T, and applying theoretically mo-
tivated corrections. They were unable to find a function that
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FIG. 1. The torsion oscillator consisted of a hollow stainless steel cylinder
suspended by a drawn quartz fiber. Oscillations of the cylinder were damped
by shear of the sample contained within. The sample volume and the dimen-
sions of the expansion volume were chosen to allow data to be taken over a
30 K range with a negligible contribution to the decrement from the fluid in
the expansion volume.

adequately described the full 91 K range of their data. Al-
though the present technique and shear rate differ greatly
from those used by Gruner er al., we obtained similar results.
In particular, for the 25 K range near T, both measurements
yielded viscosity exponents in the range y=0.028 =0.003.
In contrast, the viscosity exponents measured in pure fluids
and in binary mixtures of small molecules are approximately
1.5 times larger.

. EXPERIMENTAL METHODS
A. Sample preparation

The polystyrene and diethyl malonate had been previ-
ously prepared for the viscosity measurements of Gruner
et al.'” The polystyrene had a molecular weight of 1.02X10°
and a ratio of weight-average to number-average molecular
weights of 1.02. Two previously prepared solutions were
blended in a glove box under dry nitrogen to obtain a mix-
ture having a composition of 9.458 wt. % of polystyrene in
diethy! malonate (Gruner et al. used 9.473%). The viscom-
eter was loaded with 11.901 g of this mixture, an amount
chosen to keep the liquid—air meniscus in the viscometer’s
expansion volume throughout the 30 K measurement range
{(see Fig. 1). The critical temperature was at 274.3*x0.2 K,
about 1 K lower than that measured by Gruner et al. This 1
K difference in T, indicates a very minor difference in con-
tamination by water, which raises T, .? The critical tempera-
ture drifted by less than 10 mK during a period of three
months. Weighing the filled viscometer showed that no sig-
nificant leakage of the sample occurred during the ten

months following loading. Before beginning each run, the
sample was mixed by removing the viscometer from its tor-
sion fiber suspension and shaking the viscometer by hand for
several minutes, causing the air bubble to move from the
expansion volume throughout the viscometer’s interior.

B. Apparatus and techniques

The torsion-oscillator viscometer was similar to the vis-
cometers used for earlier measurements on pure fluids® and
binary liquid mixtures."'® All of these viscometers had three
features that are important for near-critical samples: (1) pre-
cise temperature control (<1 mK); (2) low frequency (~1
Hz); and (3) small oscillation amplitudes to achieve low
shear rates (0.1-1 s_l). The low frequency and shear rate are
needed to remain in the hydrodynamic regime, and they also
ensured that viscous heating was negligible.

As shown in Fig. 1, the fluid was contained in a cylin-
drical sample cell comprised of two stainless steel parts
soldered together to create an internal volume of 11.4 cm®.
The cylindrical extension to the main volume allowed for
thermal expansion of the sample. The radius of the expansion
volume was 3.18 mm, small enough that the fluid in this
volume made a negligible contribution to the oscillator’s
decrement. The height was 13 mm, allowing free expansion
of the sample over a 30 K range. A disk of PTFE sealed the
sample, and a thermistor glued into the wall of the expansion
volume measured the temperature of the viscometer. Added
to the sample cell were a pin vise to grip the torsion fiber and
an aluminum vane screwed onto the bottom.

As with the previous instruments,">'® the viscometer os-
cillated in a thermostat comprised of three evacuated, nested,
aluminum shells. The thermally isolated viscometer acted as
a fourth, passive thermostat stage with excellent temperature
stability. The viscosity measurements were made while the
viscometer’s temperature slowly relaxed towards the pro-
grammed temperature of the inner shell. Typically, the vis-
cometer was cooled from 295 to 275 K at 200-300 uK s~}
and then, from 7,+0.5 K to T, at 5-10 uKs™'. Dry ice
packed into an insulated box around the thermostat cooled
the thermostat’s unregulated outer shell to —20 °C.

We made viscosity measurements by using a capacitance
bridge to monitor the freely decaying torsion oscillations.
The output of the bridge was of the form

6()= 6y sin( wt)e ™ P27 3)

The initial amplitude §, was typically 1 mrad and the fre-
quency /27 was 5.4 Hz. The decrement D was determined
by fitting an exponential function to the extrema of 6(¢) for
50 periods. Typically, rms scatter in D was =0.2%.

Earlier viscosity measurements from this laboratory em-
ployed torsion oscillators with frequencies in the range 0.5 to
1.5 Hz. However, the larger viscosity of the polymer solution
required us to raise the operating frequency to 5.4 Hz. At this
higher frequency, the viscous penetration length & was less
than 2 mm, sufficiently smaller than the viscometer’s dimen-
sions to assure sensitivity of the decrement to the viscosity.
The viscous penetration length & is defined by

J. Chem. Phys., Vol. 101, No. 2, 15 July 1994



R. F. Berg and K. Gruner: Critical viscosity exponent of a polymer solution 1515

TABLE 1. Nominal parameters for initial viscosity estimates.

Radius R 15.19 mm
Half-height h 7.61 mm
Moment of inertia ! 3.652X107° kg m?
Period 2w 0.184 s
Density of fluid P 1074 kg m™?
Residual decrement D, 5%1073

2

= @
where p is the solution’s density. Other differences from pre-
vious viscosity measurements included the use of a program-
mable ratio transformer to automatically compensate for drift
in the capacitance bridge’s set point and a faster multimeter
to record the extrema in the viscometer’s torsional oscilla-
tions. The viscometer’s characteristics are summarized in
Table L.

lil. RESULTS AND ANALYSIS
A. Culling of the data

We collected decrement data during three runs, each
starting near room temperature and ending approximately 0.1
K below T,. About 10% of the 2603 decrement measure-
ments were culled because the standard deviation of the fit to
Eq. (3) was too large. Usually, these measurements had been
degraded by minor mechanical disturbances in the labora-
tory. Decrements measured at temperatures below T, also
were culled.

B. Conversion from decrement to viscosity

Our analysis accounted for the fact that the viscous pen-
etration length & was as large as 1.7 mm near T, and was
thus a significant fraction of the viscometer’s inner radius R
of 15 mm.

Newell and co-workers'® derived the equation of motion
of an oscillating fluid-filled cylinder. It relates the viscosity
to the decrement through a characteristic equation involving
the sum of a series of hyperbolic tangents of complex ele-
ments (also see Ref. 20). It was too time consuming to use
this exact result to reduce the decrement measurements. In-
stead we used an approximate working equation®® to extract
an initial estimate of the viscosity 7 from the decrement D.
This working equation was correct to 0(5/R)3 and it con-
tained the temperature-dependent parameters of the fluid
density!” and the viscometer’s dimensions. This initial esti-
mate was then corrected by the ratio of the exact solution to
the O(S/R)? estimate. This ratio, calculated for the nominal
parameters, varied from 1.007 to 1.012 for our range of dec-
rements. The sensitivity of this calculation scheme to the
choice of nominal parameters was checked numerically and
found to contribute less than 0.03% error to the final viscos-
ity.

Because we had no independent means, such as turbidity
measurements, for locating the critical temperature for each
run, we defined T, as the temperature of the cusp in a plot of
the decrement as a function of the temperature. This defini-

tion is valid in the absence of gravitational stratification.
(Stratification is important for the analysis of liquid—vapor
critical point experiments.) In previous work on simple bi-
nary mixtures,! allowing T to be a free fit parameter yielded
results consistent with defining T, in this way.

C. Frequency and shear effects

The fluctuation relaxation time 7 leads to a viscoelastic
response for frequencies w such that wr>1. Bhattacharjee
and Ferrell’s theory?! for this response is consistent with the
behavior of binary mixtures of small molecules.! Their
theory predicts that the viscoelastic perturbation in our 5.4
Hz viscometer was less than 0.5% for wt<5 at reduced tem-
peratures greater than €=1.0X107". For smaller reduced
temperatures, we used this same theory in fitting our data,
although the correction was always less than 4%.

Oxtoby’s theory?? predicts that our maximum shear rate
(0.46 s~ ) caused perturbations less than 0.5% for reduced
temperatures above 1.5 x107%, Data closer to T, were ex-
cluded from the analysis.

We also considered the possible importance of other
shear effects, including those known to exist in polymer so-
lutions. One example was found by Takebe et al.,'* who
measured shear-induced lowering of T, in a mixture of poly-
styrene and polybutadiene dissolved in dioctyl phthalate,
They found it to be much larger than that expected from
similar measurements in binary mixtures of small molecules,
even after correcting for the larger correlation length and
viscosity in the polymer system. They reported a shift AT, in
the homogenization temperature of

c

TC

=—(2.6%0.6)x 107 350:50£0.02 (5)

where S is the shear rate in s~', and they proposed that the
solution dynamics were governed by the intrinsic polymeric
“reptation time’’ rather than by hydrodynamic interactions.
Another example was found by Nakatani et al.,’3 who re-
cently measured the effects of shear rate on light scattering in
a solution of polystyrene in dioctyl phthalate at room tem-
perature. They interpreted their data in terms of a shear-rate-
dependent spinodal temperature T, with a shift AT given by

AT,
Ty

We did not detect an effect of the size implied by Eq. (5)
or Eq. (6). When we halved the oscillator amplitude at
€=1.6X1072 no significant change in the viscosity was seen
[e.g., Eq. (5) predicts a 1% change at this reduced tempera-
ture]. Also, Egs. (5) and (6) predict that halving the shear
rate shifts T, by +0.14 and —0.09 K, respectively. To within
+0.01 K, no such shift was detected. Apparently, the shear-
rate effects seen by Takebe et al. or Nakatani et al. were not
important in our measurements.

=+1.57x10738%2, 6)

D. Miscellaneous corrections

The decrement of the empty viscometer was measured to
be Do=(5+1)x107> at 1.7 Hz, with no significant depen-
dence on the temperature or the residual pressure of the sur-
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rounding gas. (Because D, was due to the oscillator’s solid
components, its value was assumed to be independent of
frequency.) The decrements for the filled viscometer fell be-
tween 0.019 and 0.029, and they were corrected by subtrac-
tion of Dy.

Fluid in the expansion volume contributed a negligible
amount to the total decrement. We calculated this amount by
deriving the exact expression for the decrement per unit
length in an infinite cylinder and then using this formula with
the length of the liquid-filled portion of the expansion vol-
ume estimated from the liquid’s density. The expansion vol-
ume was found to contribute 0.3% to the decrement at €=0.1
and only 0.08% near T, . For comparison, recall that the rms
scatter among decrement measurements was +0.2%.

As expected, the temperature of the sample lagged be-
hind that of the thermistor embedded in the wall of the ex-
pansion volume. This caused a 0.7% discontinuity in the
decrement when, at approximately 0.5 K above T, the tem-
perature sweep rate was abruptly slowed from 200 to 10
uK s™!. We therefore corrected the temperature data by an
amount:

AT= TTLherma.l N (7)

With Tena=300 s, determined by the observed discontinu-
ity. We checked this correction by estimating Tiermai- We
assumed that the thermal diffusivity of the solution was the
same as that of pure diethyl malonate,?® and we incorporated
it into a simple model of the temperature field in the sample.
Using the viscous penetration length as the characteristic
length in the thermal model, we obtained 185 s as an esti-
mate of the fluid’s contribution to 7. - The stainless steel
walls of the viscometer contributed roughly another 100 s,
making the total similar to the measured value. The correc-
tion for temperature lag had only a small influence on the
fitted parameters.
Figure 2 shows our data and those of Gruner et al.!”

E. Fitted equations

Close to T, the viscosity of simple fluids is expected to
have the form of Eq. (1), whereas far from T, it has a non-
critical temperature dependence 14(T). Although much
work?*? has been devoted to deriving an accurate expres-
sion for the viscosity at intermediate temperatures, to date
such a “crossover” theory has been applied successfully
only to pure fluids.

As was successfully done for simple binary mixtures,
we fitted the equation

(1) = 10(T) €’ F(w1) ®)

to the viscosity data. The first order effects of viscoelasticity
were accounted for by the function F(w7), which is the ratio
between the apparent viscosity and the zero-frequency vis-
cosity and is known from theory.?!

The data could not be adequately described using an
Andrade (““Arrhenius”) background for 7,(T) in Eq. (8).
Specifically, when

2T)=A ¥ Te VF(w1) 9)

1
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FIG. 2. The viscosity of the polymer solution as a function of temperature.
The superposed data of Gruner er al. (Ref. 17) (circles) differ mainly in the
critical temperature T, which is sensitive to trace amounts of dissolved
water. Only 14 points from Gruner et al. are shown. Of these, the five
closest to T, were excluded from the analysis by the shear rate criterion.

was used, the systematic deviations of the measured viscos-
ity from the best fit were as large as 2% far from T, (¢=0.1)
and were typically 0.5% at temperatures closer to T .

Fits using a Vogel-Fulcher background in Egq. (8),
namely

WT)=A #'T-TdeF(w1), (10)

were more successful. Figure 3 shows the fitted function and
the deviations for one run. The scatter and systematic devia-
tions were similar for all three runs.

The fitted parameters for the three runs are given in
Table II. Also included are the parameters resulting from
fitting Eq. (10) to the data of Gruner ez al.!” For consistency,
these earlier data were restricted to the reduced temperature
range 0.0015<e<0.1, where the lower bound was deter-
mined by shear rate and the upper bound coincides with the
present measurements.

IV. CONCLUSIONS

In spite of an 80-fold reduction in the shear rate and
despite the use of an oscillating cup viscometer instead of a
capillary viscometer, our results for the critical exponent for
the viscosity agree with the data of Gruner et al. when the
latter are analyzed in the same way. Figure 4 shows this

TABLE II. Fitted parameters for Eq. (10). Uncertainties are * 1.

A (107*Pas) B (K) Ty (K) 100 y
Gruner et al. 76 =24 37569  179+10  2.64 = 0.28
Run No. 1 7.1 % 2.1 424 + 69  169%x 9  2.66 * 0.08
Run No. 2 83 %19 379 £50 177+ 7 256 £ 0.10
Run No. 3 83+ 08 372 £21 178+ 3 3.07 = 0.05
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FIG. 3. (a) The viscosity of the polymer solution as a function of reduced
temperature. The line is Eq. (10), which incorporates a Vogel-Fulcher back-
ground viscosity, in the limit of zero frequency. (b) Deviations of the data
from Eq. (10), incorporating a Vogel—Fulcher background viscosity and the
viscoelastic correction F(w7) and fitted to the parameters in Table IL.

agreement as well as the definite disagreement with the ex-
ponents found in binary liquids and pure fluids. (We do not
know why the viscosity exponent for Run No. 3 differs from
the others. However, this difference is a small fraction of the
discrepancy between the polymer solution and the simpler
fluids.) To emphasize the varied nature of the fluids, the ex-
perimental exponents y are plotted against the normalized
slope of the background viscosity dny/dT.

The present experiment has ruled out two explanations
for the anomalously lower viscosity exponents seen in poly-
mer solutions. First, after eliminating the data close to T,
where shear thinning was expected, reduction of the shear
rate by a factor of 80 from the measurement of Gruner ef al.
had no effect on the fitted exponent. Thus, shear thinning
does not explain the lower exponents. Second, our oscillating
cup viscometer and Gruner ef al.’s capillary viscometer were
very different instruments. The consistency of the results
rules out any systematic error peculiar to either viscometer.

This consistency supports similar results found in capil-
lary viscometer studies of other polymer solutions. Izumi
et al.?® measured the viscosity of solutions of polystyrene in
cyclohexane and found y=0.029:+0.003. From the de-
scription of their experiment we estimate their maximum
shear rate near T, was 120 s”!, typical of capillary viscom-
eters. Hamano et al.” also used a capillary viscometer to

0.045 T T
O binary liquids
O CO. O
© o ¥,
0.040 |- Xe -
Yy 0.035 —
®
0.030[=  polystyrene in .
diethyl malonate
0.025 ?l

|
-10 0 +10

2
Mo JT T

FIG. 4. The viscosity exponents measured in polystyrene plus diethyl mal-
onate by the torsion oscillator (filled circles) and by a capillary viscometer
[Gruner et al. (Ref. 17) filled square]. The disparity with the exponents
obtained for other fluids can be seen. The open triangles are pure fluids (Ref.
2) and the open circles represent four binary mixtures of small molecules
(Ref. 1) (methanol + cyclohexane was measured at both constant pressure
and at constant volume). The horizontal axis indicates the temperature de-
pendence of the background viscosity 7.

measure polydimethylsiloxane dissolved in diethyl carbonate
and (in the limited range of 3.45X107%<e<1.77X107%)
found y=0.028+0.001. A correction for the shear rate
raised this value to y=0.033*=0.001.

The apparent viscosity exponent might differ from those
measured for simple fluids due to polydispersity. Debye
et al.”’ pointed out that polydispersity can lead to difficulties
in the determination of the critical temperature and concen-
tration. For example, their transmission and light scattering
measurements of T, in a solution of polystyrene in cyclohex-
ane disagreed by 0.7 K. However, we note that our critical
temperature was determined to within a few millikelvin by
the cusp in the decrement vs temperature curve, indicating a
sharp transition. Also, determinations of static exponents in
polymer solutions with comparable dispersion® ! have
yielded the expected Ising model exponents.

The apparent viscosity exponent might also be affected
by an inappropriate functional form for the background vis-
cosity 7,. The Vogel-Fulcher expression used in Eq. (10)
was chosen on empirical grounds. A shortcoming of this ex-
pression is that it does not explicitly account for the intramo-
lecular contraction associated with the theta point of polymer
solutions. As the solution cools, the polymer’s intrinsic vis-
cosity decreases, while the pure solvent’s viscosity increases.
This is an important effect because the viscosity of the
present solution is approximately ten times greater than that
of the solvent.”® Due to this large ratio, knowledge of the
concentration dependence of the viscosity at low
concentrations® and the temperature dependence of the in-
trinsic viscosity®® are inadequate for estimating 70(T) by
extrapolating from the viscosity at lower concentrations.

The most interesting possibility for the viscosity expo-
nent discrepancy between polymer solutions and simpler flu-
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ids is that the two fluids are in different dynamic universality
classes. This is strongly suggested by the present measure-
ments and the similar results in other polymer solutions.
However, this inference must be strengthened by a better
characterization of the background viscosity, ideally, guided
by an improved theory. Perhaps such characterization could
be achieved by interpolation between measurements made at
both above and below the critical concentration. Also, the
temperature dependence of the background viscosity might
be suppressed by measuring the viscosity at constant volume,
as has been done for a simple binary liquid.! Another ap-
proach would be to use polystyrene of different molecular
weights to change the distance between the theta and critical
points.
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